Publications by authors named "N N Kuznetsov"

Article Synopsis
  • Copy Number Variations (CNVs) are crucial in understanding complex diseases and vary across different populations, necessitating large sample studies for accurate analysis.
  • The CNV-Finder pipeline utilizes deep learning, specifically Long Short-Term Memory (LSTM) networks, to streamline the identification of CNVs in specific genomic areas, making subsequent analyses like genome sequencing more efficient.
  • The tool has been validated with data from various cohorts, focusing on genes related to neurological diseases, and includes an interactive web application for researchers to visualize and refine their findings based on model predictions.
View Article and Find Full Text PDF

Apurinic/apyrimidinic endonuclease 1 (APE1) is responsible for the hydrolysis of the phosphodiester bond on the 5' side of an apurinic/apyrimidinic site during base excision repair. Moreover, in DNA, this enzyme can recognize nucleotides containing such damaged bases as 5,6-dihydro-2'-deoxyuridine (DHU), 2'-deoxyuridine (dU), alpha-2'-deoxyadenosine (αA), and 1,6-ethenoadenosine (εA). Previously, by pulsed electron-electron double resonance spectroscopy and pre-steady-state kinetic analysis, we have revealed multistep DNA rearrangements during the formation of the catalytic complex.

View Article and Find Full Text PDF

R-loops can act as replication fork barriers, creating transcription-replication collisions and inducing replication stress by arresting DNA synthesis, thereby possibly causing aberrant processing and the formation of DNA strand breaks. RNase H1 (RH1) is one of the enzymes that participates in R-loop degradation by cleaving the RNA strand within a hybrid RNA-DNA duplex. In this study, the kinetic features of the interaction of RH1 from with R-loops of various structures were investigated.

View Article and Find Full Text PDF

The mechanism of transcription proceeds through the formation of R-loop structures containing a DNA-RNA heteroduplex and a single-stranded DNA segment that should be placed inside the elongation complex; therefore, these nucleic acid segments are limited in length. The attachment of each nucleotide to the 3' end of an RNA strand requires a repeating cycle of incoming nucleoside triphosphate binding, catalysis, and enzyme translocation. Within these steps of transcription elongation, RNA polymerase sequentially goes through several states and is post-translocated, catalytic, and pre-translocated.

View Article and Find Full Text PDF

GenoTools, a Python package, streamlines population genetics research by integrating ancestry estimation, quality control (QC), and genome-wide association studies (GWAS) capabilities into efficient pipelines. By tracking samples, variants, and quality-specific measures throughout fully customizable pipelines, users can easily manage genetics data for large and small studies. GenoTools' "Ancestry" module renders highly accurate predictions, allowing for high-quality ancestry-specific studies, and enables custom ancestry model training and serialization specified to the user's genotyping or sequencing platform.

View Article and Find Full Text PDF