Publications by authors named "N N Hieu"

This study focuses on fabricating a hybrid structure consisting of ZnO nanorods and ZnTe nanoparticles for NO gas detection, particularly exploring the impact of light irradiation at room temperature (RT). The morphology, physical characteristics, and chemical properties of the ZnO/ZnTe hybrid structure are carefully studied under diverse analytical methods such as X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and other measurements. The ZnO/ZnTe composite displayed an improved response toward 500 ppb NO under the blue light radiation effect.

View Article and Find Full Text PDF

Dipicolinic acid (DPA) is a key biomarker of bacterial spores. In this study, we present a novel distance-based paper analytical device (d-PAD) for the fluorescence sensing of DPA. The detection mechanism relies on the complexation of ofloxacin (OFL) with Cu ions, where Cu quenches the fluorescence of OFL static quenching.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the electronic properties and contact behavior of graphene/γ-GeSe heterostructures using first-principles calculations under electric fields and strains.
  • At equilibrium, the heterostructure exhibits a p-type Schottky contact with a low barrier, ideal for low-resistance electronic devices.
  • Applying electric fields and adjusting strains can switch contact types from p-type to n-type or even to Ohmic contact, opening up opportunities for enhancing device performance through tunable electronic properties.
View Article and Find Full Text PDF

Two-dimensional materials and their combined heterostructures have paved the way for numerous next-generation electronic and optoelectronic applications. Herein, we performed first principles calculations to computationally design the MoSe/WS heterostructure and consider its geometric structure, electronic properties and contact behavior, as well as the effects of the electric fields and strain. Our results show that the MoSe/WS heterostructure is energetically, thermodynamically and mechanically stable.

View Article and Find Full Text PDF