Publications by authors named "N N GUPTA"

Progressive forms of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), are deadly disorders lacking non-invasive biomarkers for assessment of early disease activity, which presents a major obstacle in disease management. Excessive extracellular matrix (ECM) deposition is a hallmark of these disorders, with fibronectin being an abundant ECM glycoprotein that is highly upregulated in early fibrosis and serves as a scaffold for the deposition of other matrix proteins. Due to its role in active fibrosis, we are targeting fibronectin as a biomarker of early lung fibrosis disease activity via the PEGylated fibronectin-binding polypeptide (PEG-FUD).

View Article and Find Full Text PDF

Context: Medical education in the United States has undergone significant changes, specifically within the osteopathic community. In 2020, a merger occurred between the American Osteopathic Association (AOA) and the Accreditation Council for Graduate Medical Education (ACGME), forming a single accreditation system (SAS) for graduate medical education and residency placement, with the purpose to create consistency within graduate medical education and to provide equal opportunities for applicants pursuing all specialties in medicine. However, osteopathic medical students, especially students applying to competitive residencies including orthopedic surgery, have faced challenges, raising concerns about future implications within this field.

View Article and Find Full Text PDF

The term "asthma-chronic obstructive pulmonary disease (COPD) combined phenotype" describes patients with persistent airflow limitation and features of both asthma and COPD. There is a lack of data on effective treatments for this group, often excluded from asthma or COPD trials. Inhaled corticosteroids (ICS) are standard for asthma, while bronchodilators are key for COPD.

View Article and Find Full Text PDF

Background: Megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare and progressive neurodegenerative disorder involving the white matter, is not adequately recapitulated by current disease models. Somatic cell reprogramming, along with advancements in genome engineering, may allow the establishment of human models of MLC for disease modeling and drug screening. In this study, we utilized cellular reprogramming and gene-editing techniques to develop induced pluripotent stem cell (iPSC) models of MLC to recapitulate the cellular context of the classical MLC-impacted nervous system.

View Article and Find Full Text PDF