Publications by authors named "N N Babyshkina"

Background: Hereditary breast cancer is an autosomal dominant disease caused by variants in genes such as BRCA1/2, RAD51, ATM, BRIP1, and others. In a previous study using whole exome sequencing, we identified a germline variant of the LGR4 gene (rs34804482, NM_018490.5(LGR4):c.

View Article and Find Full Text PDF

Whole exome sequencing of peripheral blood samples from Tuvan females diagnosed with breast and ovarian cancers (BC/OC) was performed to search for new genes involved in BC/OC pathogenesis. Considering the high cost of whole exome sequencing and study material requirements, 9 samples were selected from 61 genomic DNA samples. A mutation in the LGR4 gene (rs34804482) involved in the tumor-mediated Wnt signaling pathway and a mutation in the BRWD1 gene (rs147211854) involved in chromatin remodeling were identified in BC patients.

View Article and Find Full Text PDF

Immunotherapy has become an integral part of a comprehensive treatment approach to metastatic colorectal cancer (mCRC). Nivolumab (Opdivo) is a human immunoglobulin G4 monoclonal antibody that blocks the interaction between the programmed cell death 1 (PD-1) receptor and its ligands 1/2 (PD-L1/PD-L2), leading to inhibition of T-cell proliferation, cytokine secretion, and enhanced immune response. The US Food and Drug Administration (FDA) has approved this drug for use in high microsatellite instability (MSI-high)/deficiencies in mismatch repair (dMMR) advanced CRC patients.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on reclassifying genetic variants related to early-onset breast cancer in young Buryat women, highlighting that a significant portion of these variants are classified as variants of unknown significance (VUS).
  • Using a specialized database, the researchers analyzed 135 rare genetic mutations to determine their impact on post-translational modifications (PTM) in proteins.
  • Ultimately, they identified that 7.4% of these mutations affected PTM sites, providing new insights into the genetic landscape of breast cancer among this population.
View Article and Find Full Text PDF

The transforming growth factor beta (TGF-β) signaling pathway plays complex role in the regulation of cell proliferation, apoptosis and differentiation in breast cancer. TGF-β activation can lead to multiple cellular responses mediating the drug resistance evolution, including the resistance to antiestrogens. Tamoxifen is the most commonly prescribed antiestrogen that functionally involved in regulation of TGF-β activity.

View Article and Find Full Text PDF