von Willebrand factor (VWF) performs its hemostatic functions through binding to various proteins. The A1 domain of VWF contains binding sites of not only physiologically important ligands, but also exogenous modulators that induce VWF-platelet aggregation. Sulfatides, 3-sulfated galactosyl ceramides, that are expressed on oligodendrocytes, renal tubular cells, certain tumor cells and platelets, have been suggested to interact with VWF under some pathological conditions.
View Article and Find Full Text PDFPrevious studies have shown that the secretion of oxytocin and vasopressin from the posterior pituitary always accompanies systemic hyperosmotic stimuli in rats, and that oxytocin and vasopressin mRNAs consistently increase in response to prolonged hyperosmotic stimuli. Hence, it has been widely interpreted that oxytocin and vasopressin secretion and gene expression are closely coupled. In the present study, we used both vasopressin and oxytocin intron- specific probes to measure vasopressin and oxytocin heteronuclear RNA (hnRNA) levels, respectively, by in situ hybridisation in the rat supraoptic nucleus (SON) in conjunction with radioimmunoassays of vasopressin and oxytocin peptide levels in plasma and in the posterior pituitary in normally hydrated rats and after 1-5 days of salt loading.
View Article and Find Full Text PDFBackground: Reduction of intramedullary hematopoiesis and the development of myelofibrosis and splenic hematopoiesis are frequent complications of clonal myeloid disorders that cause severe morbidity and death and present a therapeutic challenge. However, the pathogenesis of these complications is still unknown. We evaluated the effect of fibroblast growth factor 2 (FGF-2), the level of which is elevated in patients with clonal myeloid disorders, on bone marrow stromal cell expression of stromal cell-derived factor 1 (SDF-1), a chemokine that is essential for normal hematopoiesis.
View Article and Find Full Text PDFThe chemokine stromal cell-derived factor-1 (SDF-1) is constitutively expressed by bone marrow stromal cells and plays key roles in hematopoiesis. Fibroblast growth factor 2 (FGF2), a member of the FGF family that plays important roles in developmental morphogenic processes, is abnormally elevated in the bone marrow from patients with clonal myeloid disorders and other disorders where normal hematopoiesis is impaired. Here, we report that FGF2 reduces SDF-1 secretion and protein content in bone marrow stromal cells.
View Article and Find Full Text PDF