Publications by authors named "N Musee"

Cerium oxide engineered nanoparticles (nCeO) are widely used in various applications and are, also, increasingly being detected in different environmental matrixes. However, their impacts on the aquatic environment remain poorly quantified. Hence, there is a need to investigate their effects on non-target aquatic organisms.

View Article and Find Full Text PDF

Predictive algorithms for exposure characterization of engineered nanoparticles (ENPs) in the ecosystems are essential to improve the development of robust nano-safety frameworks. Here, machine learning (ML) techniques were utilised for data mining and prediction of the dynamic aggregation transformation process in aqueous environments using case studies of nZnO and nTiO. Supervised ML models using input variables of natural organic matter, ionic strength, size, and ENPs concentration showed poor prediction performance based on statistical metric values of root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R), and Nash-Sutcliffe efficiency (NSE) for both types of ENP.

View Article and Find Full Text PDF

The alteration of organisms protein functions by engineered nanoparticles (ENPs) is dependent on the complex interplay between their inherent physicochemical properties (e.g., size, surface coating, shape) and environmental conditions (e.

View Article and Find Full Text PDF

Antiretroviral (ARVs) drugs are used to manage the human immunodeficiency virus (HIV) disease and are increasingly being detected in the aquatic environment. However, little is known about their effects on non-target aquatic organisms. Here, neonates were exposed to Efavirenz (EFV) and Tenofovir (TFV) ARVs at 62.

View Article and Find Full Text PDF

The study investigated the interactions of coated-gold engineered nanoparticles (nAu) with the aquatic higher plant Baker in 2,7, and 14 d. Herein, the nAu concentration of 1000 µg/L was used; as in lower concentrations, analytical limitations persisted but >1000 µg/L were deemed too high and unlikely to be present in the environment. Exposure of to 1000 µg/L of citrate (cit)- and branched polyethyleneimine (BPEI)-coated nAu (5, 20, and 40 nm) in 10% Hoagland's medium (10 HM) had marginal effect on biomass and growth rate irrespective of nAu size, coating type, or exposure duration.

View Article and Find Full Text PDF