Oncolytic viral therapy is a recent advance in cancer treatment, demonstrating promise as a primary treatment option. To date, the secondary metabolic effects of viral infection in cancer cells has not been extensively studied. In this work, we have analyzed early-stage metabolic changes in cancer cells associated with oncolytic myxoma virus infection.
View Article and Find Full Text PDFRNA helicase A/DHX9 is required for diverse RNA-related essential cellular functions and antiviral responses and is hijacked by RNA viruses to support their replication. Here, we show that during the late replication stage in human cancer cells of myxoma virus (MYXV), a member of the double-stranded DNA (dsDNA) poxvirus family that is being developed as an oncolytic virus, DHX9, forms unique granular cytoplasmic structures, which we named "DHX9 antiviral granules." These DHX9 antiviral granules are not formed if MYXV DNA replication and/or late protein synthesis is blocked.
View Article and Find Full Text PDFOncolytic virotherapy has been proposed as an ablative and immunostimulatory treatment strategy for solid tumors that are resistant to immunotherapy alone; however, there is a need to optimize host immune activation using preclinical immunocompetent models in previously untested common adult tumors. We studied a modified oncolytic myxoma virus (MYXV) that shows high efficiency for tumor-specific cytotoxicity in small-cell lung cancer (SCLC), a neuroendocrine carcinoma with high mortality and modest response rates to immune checkpoint inhibitors. Using an immunocompetent SCLC mouse model, we demonstrated the safety of intrapulmonary MYXV delivery with efficient tumor-specific viral replication and cytotoxicity associated with induction of immune cell infiltration.
View Article and Find Full Text PDFInfections caused by mule deerpox virus (MDPV) have been sporadically reported in North American cervids. White-tailed deer (Odocoileus virginianus) fawns from a farm located in South Central Florida presented with ulcerative and crusting lesions on the coronary band as well as the mucocutaneous tissues of the head. Evaluation of the crusted skin lesions was undertaken using microscopic pathology and molecular techniques.
View Article and Find Full Text PDF