Publications by authors named "N Mosavian"

Article Synopsis
  • * Researchers used a specialized magnetic microscope to image the magnetic fields from many isolated SPIONs, discovering distinct magnetization patterns that traditional methods wouldn't reveal.
  • * The study also recorded SPION relaxation times after an applied magnetic field was turned off, showing a wide range of characteristics among the nanoparticles, indicating their varied behavior and potential for further nanomagnetism research.
View Article and Find Full Text PDF

Scanning-probe and wide-field magnetic microscopes based on nitrogen-vacancy (NV) centers in diamond have enabled advances in the study of biology and materials, but each method has drawbacks. Here, we implement an alternative method for nanoscale magnetic microscopy based on optical control of the charge state of NV centers in a dense layer near the diamond surface. By combining a donut-beam super-resolution technique with optically detected magnetic resonance spectroscopy, we imaged the magnetic fields produced by single 30 nm iron-oxide nanoparticles.

View Article and Find Full Text PDF

Scanning-probe and wide-field magnetic microscopes based on Nitrogen-Vacancy (NV) centers in diamond have enabled remarkable advances in the study of biology and materials, but each method has drawbacks. Here, we implement an alternative method for nanoscale magnetic microscopy based on optical control of the charge state of NV centers in a dense layer near the diamond surface. By combining a donut-beam super-resolution technique with optically detected magnetic resonance spectroscopy, we imaged the magnetic fields produced by single 30-nm iron-oxide nanoparticles.

View Article and Find Full Text PDF

Radio frequency (RF) magnetometers based on nitrogen vacancy centers in diamond are predicted to offer femtotesla sensitivity, but previous experiments were limited to the picotesla level. We demonstrate a femtotesla RF magnetometer using a diamond membrane inserted between ferrite flux concentrators. The device provides ~300-fold amplitude enhancement for RF magnetic fields from 70 kHz to 3.

View Article and Find Full Text PDF

Magnetometers based on nitrogen-vacancy (NV) centers in diamond are promising room-temperature, solid-state sensors. However, their reported sensitivity to magnetic fields at low frequencies (≾1 kHz) is presently ≿10 pT s, precluding potential applications in medical imaging, geoscience, and navigation. Here we show that high-permeability magnetic flux concentrators, which collect magnetic flux from a larger area and concentrate it into the diamond sensor, can be used to improve the sensitivity of diamond magnetometers.

View Article and Find Full Text PDF