Publications by authors named "N Mohammadpour Dounighi"

Background: Nanoparticles have received more and more attention in the vaccine and drug delivery systems field due to their specific properties. In particular, alginate and chitosan have been known as the most promising nano-carries. Digoxin-specific antibodies effectively manage acute and chronic digitalis poisoning using sheep antiserum.

View Article and Find Full Text PDF

Background: Outer membrane vesicles (OMVs) release from Gram-negative bacteria and are interesting alternatives that can replace those vaccines that contain naturally incorporated bacterial surface antigens, lipopolysaccharides (LPS) and outer membrane proteins (OMPs). Nanoparticles can be used to encapsulate vesicles for slow release and prevent macromolecular degradation.

Objective: Therefore, encapsulation of OMVs of B.

View Article and Find Full Text PDF

In spite of the progress of conventional vaccines, improvements are required due to concerns about the low immunogenicity of the toxicity, instability, and the need for multiple administrations of the vaccines. To overcome the mentioned problems, nanotechnology has recently been incorporated into vaccine development. Nanotechnology increasingly plays an important role in vaccine development nanocarrier-based delivery systems that offer an opportunity to increase the cellular and humoral immune responses.

View Article and Find Full Text PDF

Background: We investigated the hemodynamic changes (Inotropic, chronotropic and arrhythmogenic) in intravenously envenomed anesthetized rats with venom. The neutralizing potencies of different drugs and commercial antivenom were assessed simultaneously.

Methods: Different doses of the crude venom (100, 200 and 400μg/rat) were injected during five minutes via the femoral vein and cardiovascular changes were recorded in rats in Razi Institute Corporation, Karaj, Iran in 2017.

View Article and Find Full Text PDF

In this study chitosan nanoparticles (CS NPs) and mannosylated chitosan nanoparticles (MCH NPs) loaded with recombinant hepatitis B surface antigen (rHBsAg) was synthesized as a vaccine delivery system and assessed toxically and immunologically. The physicochemical properties of the nanoparticles (NPs) were determined by methods including scanning electron microscope (SEM) and dynamic light scattering (DLS). The morphology of the NPs was semi spherical and the average diameter of the loaded CS and MCH NPs was found to be 189 and 239 nm, respectively.

View Article and Find Full Text PDF