Aims: The term angiogenesis refers to sprouting of new blood vessels from pre-existing ones. The angiogenic process involves cell migration and tubulogenesis requiring interaction between endothelial cells and the extracellular matrix. Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase found embedded in the basement membranes.
View Article and Find Full Text PDFProtein carbamylation by cyanate is a post-translational modification associated with several (patho)physiological conditions, including cardiovascular disorders. However, the biochemical pathways leading to protein carbamylation are incompletely characterized. This work demonstrates that the heme protein myeloperoxidase (MPO), which is secreted at high concentrations at inflammatory sites from stimulated neutrophils and monocytes, is able to catalyze the two-electron oxidation of cyanide to cyanate and promote the carbamylation of taurine, lysine, and low-density lipoproteins.
View Article and Find Full Text PDFObjective: Plasma and synovial myeloperoxidase (MPO) and its products were strongly associated with osteoarthritis (OA) and rheumatoid arthritis (RA). In addition, it is well known that there is a link between oxidative stress and cytokines. The present study aims at investigating the link between synovial MPO (and its products), interleukin (IL)-18, which is involved in the degradation of articular cartilage in RA, and IL-8, which is involved in recruitment and activation of neutrophils during inflammation.
View Article and Find Full Text PDFMediators Inflamm
October 2014
The present paradigm of atherogenesis proposes that low density lipoproteins (LDLs) are trapped in subendothelial space of the vascular wall where they are oxidized. Previously, we showed that oxidation is not restricted to the subendothelial location. Myeloperoxidase (MPO), an enzyme secreted by neutrophils and macrophages, can modify LDL (Mox-LDL) at the surface of endothelial cells.
View Article and Find Full Text PDFA high degree of uremia is common in patients with end-stage renal disease and has been linked to the development of chronic inflammation and cardiovascular diseases. In conditions where transplantation is not possible, uremia can be reduced by hemodialysis although the repeated interventions have been implicated in loss of renal function, partially as a result of chronic inflammation and/or oxidative stress processes. In this context, it has been suggested that myeloperoxidase (MPO) can contribute to the oxidative stress during hemodialysis and to the cardiovascular risk.
View Article and Find Full Text PDF