Publications by authors named "N Ming"

Nuclear protein delivery underlies an array of biotechnological and therapeutic applications. While many variations of protein delivery methods have been described, it can still be difficult or inefficient to introduce exogenous proteins into plants. A major barrier to progress is the cell wall which is primarily composed of polysaccharides and thus only permeable to small molecules.

View Article and Find Full Text PDF

Background: The ethical discourse regarding the delivery of global surgical care has increased in the 21st century. The aims of this manuscript are to explore the differences in ethical domains in the global cleft surgical literature discussed by authors from high-income countries versus lower-middle-income countries and to elucidate changes in ethical discussions over the last decade.

Methods: A thematic coding analysis was completed using NVivo 12 qualitative data analysis software.

View Article and Find Full Text PDF

T-cell-mediated therapeutic strategies are the most potent effectors of cancer immunotherapy. However, an essential barrier to this therapy in solid tumors is disrupting the anti-cancer immune response, cancer-immunity cycle, T-cell priming, trafficking and T-cell cytotoxic capacity. Thus, reinforcing the anti-cancer immune response is needed to improve the effectiveness of T-cell-mediated therapy.

View Article and Find Full Text PDF

Terahertz spectroscopy systems, which integrate terahertz sources and detectors, have important applications in many fields such as materials science and security checking. Based on highly sensitive frequency up-conversion detection, large dynamic range spectral measurements in a terahertz region are reported. Our system realized the detection sensitivity at a 10 aJ level with a 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile (OH1) crystal and a dynamic range up to seven orders.

View Article and Find Full Text PDF

The wide applications of terahertz (THz) wave technology in the ∼1-3 THz range has resulted in a surge in the demand for the performance improvement of THz wave detection technique. In this study, a frequency tunable, highly sensitive frequency upconversion detection based on a 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile (OH1) crystal at room temperature is demonstrated. Moreover, to effectively increase the signal-to-noise ratio in the low frequency range, a beam isolation enhancer is proposed and its effect is verified.

View Article and Find Full Text PDF