Daily contact with considerable amounts of polystyrene nanoparticles (PSNPs) may cause harmful effects on the living organisms, through mechanisms that are not fully understood. The study aimed to evaluate the cytotoxic and genotoxic effects of PSNPs (size 200 nm and 40 nm) in mesenchymal stem cells (MSCs). In order to estimate cellular uptake and retention of nanoplastics, PSNP-treated cells have been analyzed by transmission electron microscopy.
View Article and Find Full Text PDFThis study investigates the potential of using ionic liquids as cosolvents to enhance the solubility and activity of poorly soluble rhodium(III) complexes, particularly those with diene, pyridine derivatives, and camphor-derived bis-pyrazolylpyridine ligands, in relation to 5'-GMP, CT-DNA, and HSA as well as their biological activity. Findings indicate that ionic liquids significantly increase the substitution activity of these complexes toward 5'-GMP while only marginally affecting DNA/HSA binding affinities with molecular docking, further confirming the experimental results. Lipophilicity assessments indicated good lipophilicity.
View Article and Find Full Text PDFHere, an artificial intelligence (AI)-based approach was employed to optimize the production of electrospun scaffolds for in vivo wound healing applications. By combining polycaprolactone (PCL) and poly(ethylene glycol) (PEG) in various concentration ratios, dissolved in chloroform (CHCl) and dimethylformamide (DMF), 125 different polymer combinations were created. From these polymer combinations, electrospun nanofiber meshes were produced and characterized structurally and mechanically via microscopic techniques, including chemical composition and fiber diameter determination.
View Article and Find Full Text PDFAim: Despite some successful examples of therapeutic nanoparticles reaching clinical stages, there is still a significant need for novel formulations in order to improve the selectivity and efficacy of cancer treatment.
Methods: The authors developed two novel dendrimer-gold (Au) complex-based nanoparticles using two different synthesis routes: complexation method (formulation A) and precipitation method (formulation B). Using a biomimetic cancer-on-a-chip model, the authors evaluated the possible cytotoxicity and internalization by colorectal cancer cells of dendrimer-Au complex-based nanoparticles.