The mutational landscape of TP53, a tumor suppressor mutated in about half of all cancers, includes over 2,000 known missense mutations. To fully leverage TP53 mutation status for personalized medicine, a thorough understanding of the functional diversity of these mutations is essential. We conducted a deep mutational scan using saturation genome editing with CRISPR-mediated homology-directed repair to engineer 9,225 TP53 variants in cancer cells.
View Article and Find Full Text PDFNatural killer (NK) cells play a pivotal role against cancer, both by direct killing of malignant cells and by promoting adaptive immune response though cytokine and chemokine secretion. In the lung tumor microenvironment (TME), NK cells are scarce and dysfunctional. By conducting single-cell transcriptomic analysis of lung tumors, and exploring pseudotime, we uncovered that the intratumoral maturation trajectory of NK cells is disrupted in a tumor stage-dependent manner, ultimately resulting in the selective exclusion of the cytotoxic subset.
View Article and Find Full Text PDFMalignant cells are part of a complex network within the tumor microenvironment, where their interaction with host cells and soluble mediators, including complement components, is pivotal. The complement system, known for its role in immune defense and homeostasis, exhibits a dual effect on cancer progression. This dichotomy arises from its antitumoral opsonophagocytosis and cytotoxicity versus its protumoral chronic inflammation mediated by the C5a/C5aR1 axis, influencing antitumor T-cell responses.
View Article and Find Full Text PDFA new hybrid catalyst consisting of cobalt nanoparticles immobilized onto cellulose was developed. The cellulosic matrix is derived from date palm biomass waste, which was oxidized by sodium periodate to yield dialdehyde and was further derivatized by grafting orthoaminophenol as a metal ion complexing agent. The new hybrid catalyst was characterized by FT-IR, solid-state NMR, XRD, SEM, TEM, ICP, and XPS.
View Article and Find Full Text PDFCoordinative chain transfer polymerization, CCTP, is a degenerative chain transfer polymerization process that has a wide range of applications. It allows a highly controlled synthesis of polyolefins, stereoregular polydienes, and stereoregular polystyrene, including (stereo)block as well as statistical copolymers thereof. It also shows a green character by allowing catalyst economy during the synthesis of such polymers.
View Article and Find Full Text PDF