Rheumatoid arthritis (RA) is a complex immune-mediated inflammatory disorder in which patients suffer from inflammatory-erosive arthritis. Recent advances on histopathology heterogeneity of RA synovial tissue revealed three distinct phenotypes based on cellular composition (pauci-immune, diffuse and lymphoid), suggesting that distinct etiologies warrant specific targeted therapy which motivates a need for cost effective phenotyping tools in preclinical and clinical settings. To this end, we developed an automated multi-scale computational pathotyping (AMSCP) pipeline for both human and mouse synovial tissue with two distinct components that can be leveraged together or independently: (1) segmentation of different tissue types to characterize tissue-level changes, and (2) cell type classification within each tissue compartment that assesses change across disease states.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an autoimmune disease involving antigen-specific T and B cells. Here, we perform single-cell RNA and repertoire sequencing on paired synovial tissue and blood samples from 12 seropositive RA patients. We identify clonally expanded CD4 + T cells, including CCL5+ cells and T peripheral helper (Tph) cells, which show a prominent transcriptomic signature of recent activation and effector function.
View Article and Find Full Text PDFAutoimmune diseases with B cell-directed therapeutics approved by the US Food and Drug Administration are surprisingly diverse in clinical manifestations and pathophysiology. In this review, we focus on recent clinical and mechanistic insights into the efficacy of B cell depletion in these diverse autoimmune disorders, the rapidly expanding armamentarium of approved agents, and future approaches. The pathogenic roles for B cells include direct functions such as production of autoantibodies and proinflammatory cytokines and indirect functions via antigen presentation to T cells.
View Article and Find Full Text PDFRheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an autoimmune disease initiated by antigen-specific T cells and B cells, which promote synovial inflammation through a complex set of interactions with innate immune and stromal cells. To better understand the phenotypes and clonal relationships of synovial T and B cells, we performed single-cell RNA and repertoire sequencing on paired synovial tissue and peripheral blood samples from 12 donors with seropositive RA ranging from early to chronic disease. Paired transcriptomic-repertoire analyses highlighted 3 clonally distinct CD4 T cells populations that were enriched in RA synovium: T peripheral helper (Tph) and T follicular helper (Tfh) cells, CCL5+ T cells, and T regulatory cells (Tregs).
View Article and Find Full Text PDF