To improve imputation quality for genome-wide association studies (GWAS) conducted on the Japanese population, we developed and evaluated four Japanese population-specific reference panels. These panels were constructed through the augmentation of the 1000 Genomes Project (1KG) panel using Japanese whole genome sequencing (WGS) data, with sample sizes ranging from 1 K to 7 K individuals enrolled through the Biobank Japan (BBJ) project, and sequencing depths ranging from 3× to 30×. Among these panels, an augmented reference panel comprising 7472 WGS samples of mixed depth (1KG+7K) exhibit the greatest improvement in imputation quality relative to the Trans-Omics for Precision Medicine (TOPMed) reference panel.
View Article and Find Full Text PDFObjectives: Describe the prevalence, health, and birth outcomes of incarcerated pregnant individuals in California between 2011 and 2015.
Study Design: A population-based cohort study was performed using linked birth certificate and hospital discharge data. Associations between incarceration and birth outcomes were examined, including multivariable logistic regression to estimate odds ratios and 95% confidence intervals.
While guided human cortical organoid (hCO) protocols reproducibly generate cortical cell types at one site, variability in hCO phenotypes across sites using a harmonized protocol has not yet been evaluated. To determine the cross-site reproducibility of hCO differentiation, three independent research groups assayed hCOs in multiple differentiation replicates from one induced pluripotent stem cell (iPSC) line using a harmonized miniaturized spinning bioreactor protocol across 3 months. hCOs were mostly cortical progenitor and neuronal cell types in reproducible proportions that were consistently organized in cortical wall-like buds.
View Article and Find Full Text PDFNeuropsychiatric genome-wide association studies (GWASs), including those for autism spectrum disorder and schizophrenia, show strong enrichment for regulatory elements in the developing brain. However, prioritizing risk genes and mechanisms is challenging without a unified regulatory atlas. Across 672 diverse developing human brains, we identified 15,752 genes harboring gene, isoform, and/or splicing quantitative trait loci, mapping 3739 to cellular contexts.
View Article and Find Full Text PDF