The study of surface properties at the nanoscale plays a crucial role in material science applications. This paper demonstrates the capabilities of Auger PhotoElectron Coincidence Spectroscopy (APECS) to obtain data with varying surface sensitivities from a single measurement. This makes it possible to extract the spectrum from the outermost surface layer even when faced with strongly overlapping surface and bulk spectral features, which we demonstrate by accurately extracting the surface component in Au 4f photoemission.
View Article and Find Full Text PDFAuger-photoelectron coincidence spectroscopy (APECS) has been used to examine the electron correlation and itinerance effects in transition metals Cu, Ni and Co. It is shown that the LVV Auger, in coincidence with 2p photoelectrons, spectra can be represented using atomic multiplet positions if the 3d-shell is localized (atomic-like) and with a self-convoluted valence band for band-like (itinerant) materials as explained using the Cini-Sawatzky model. For transition metals, the 3d band changes from band-like to localized with increasing atomic number, with the possibility of a mixed behavior.
View Article and Find Full Text PDF