Industrialization has led to environmental pollution with various hazardous chemicals including pollution with metals. In this regard, the development of highly efficient analytical methods for their determination has received considerable attention to ensure public safety. Currently, scientists are paying more and more attention to the automation of analytical methods, since it permits fast, accurate, and sensitive analysis with minimal exposure of analysts to hazardous substances.
View Article and Find Full Text PDFCapsule phase microextraction (CPME) is an efficient bioanalytical technique that streamlines the sample preparation by integrating the filtration and stirring mechanism directly into the device. A novel composite sorbent designed to be selective towards the target analytes consisting of mixed-mode sorbent chemistry synthesized by sol-gel technology is found promising and superior to the conventional C sorbents. Herein we describe the encapsulation of an ionic liquid (IL)/Carbowax 20M-functionalized sol-gel sorbent (sol-gel IL/Carbowax 20 M) in the lumen of porous polypropylene tubes for the capsule phase microextraction of three phosphodiesterase-5 inhibitors namely avanafil, sildenafil, and tadalafil in human serum and urine samples.
View Article and Find Full Text PDFBackground: Omics is used as an analytical tool to investigate wine authenticity issues. Aging authentication ensures that the wine has undergone the necessary maturation and developed its desired organoleptic characteristics. Considering that aged wines constitute valuable commodities, the development of advanced omics techniques that guarantee aging authenticity and prevent fraud is essential.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
March 2024
Clomipramine (CLP) is a tricyclic antidepressant drug, and its determination in biological samples is of high importance in clinical and forensic evaluations to assure appropriate drug concentrations. In the present study, benzoic acid was employed as a pH-switchable hydrophilicity solvent (SHS) for the microextraction of CLP from authentic human urine samples prior to its determination by high performance liquid chromatography-ultraviolet detection (HPLC-UV). The microextraction protocol was based on the phase transition of the SHS through pH alteration that resulted in its rapid dispersion and simultaneous phase separation.
View Article and Find Full Text PDFHerein, the proof-of-concept of a novel lab-in-syringe (LIS) foam microextraction platform is presented as a front-end to cold vapor atomic absorption spectrometry (CVAAS) for the simultaneous preconcentration and membraneless gas-liquid separation (GLS) of inorganic mercury in biological samples. The proposed method is based on the on-line formation of the ammonium pyrrolidine dithiocarbamate complex with mercury that was retained in the pores of polyurethane foam immobilized on the piston of the LIS system. Metal complex elution and in situ mercury vapor generation are accomplished inside the microsyringe in a flow-batch format, while the separation of vapor species is achieved via the membraneless GLS found at the top of the syringe's barrel.
View Article and Find Full Text PDF