The use of energy piles as heat exchangers for Ground Source Heat Pump (GSHP) systems, providing heating and cooling, is a well researched application worldwide [1]. However, a broader implementation in practice still faces resistance, mainly because of the lack of accessible, easy to implement design methods and uncertainty regarding the thermo-mechanical effects. These issues need to be addressed to close the gap between research and practice.
View Article and Find Full Text PDFAnthropogenic infrastructures in the shallow subsurface, such as heated basements, tunnels or shallow geothermal systems, are known to increase ground temperatures, particularly in urban areas. Numerical modelling helps inform on the extent of thermal influence of such structures, and its potential uses. Realistic modelling of the subsurface is often computationally costly and requires large amounts of data which is often not readily available, necessitating the use of modelling simplifications.
View Article and Find Full Text PDFThe dataset in this article is related to shallow geothermal energy systems, which efficiently provide renewable heating and cooling to buildings, and specifically to the performance of the vertical ground heat exchangers (GHE) embedded in the ground. GHEs incorporate pipes with a circulating (carrier) fluid, exchanging heat between the ground and the building. The data show the average and inlet temperatures of the carrier fluid circulating in the pipes embedded in the GHEs (which directly relate to the performance of these systems).
View Article and Find Full Text PDF