Publications by authors named "N Maciejewska"

Europe is the largest producer and consumer of cheese, with growing interest in raw milk cheeses due to their natural qualities and unique flavor. However, the absence of pasteurization increases the risk of pathogens and biogenic amines (BAs), which can cause foodborne illnesses. This study examined the effect of two ripening temperatures (5°C and 12°C) on microbial quality and BAs in rennet cheeses made from unpasteurized cow's milk over 63 days.

View Article and Find Full Text PDF

Quantitative microbiological risk assessment (QMRA) of pathogens in food safety is well established, but steps are being taken to expand this methodology to food spoilage. Parallels can be drawn between the steps involved in a QMRA for pathogens and its application to specific spoilage organisms (SSO). During hazard characterisation for pathogens, the appropriate dose-response model is used to link the hazard level to the health outcome by estimating the probability of illness, resulting from the ingestion of a certain dose of the hazard.

View Article and Find Full Text PDF

This study presents an innovative method for producing thermosensitive bioink from chitosan hydrogels saturated with carbon dioxide and agarose. It focuses on a detailed characterisation of their physicochemical properties and potential applications in biomedicine and tissue engineering. The ORO test approved the rapid regeneration of the three-dimensional structure of chitosan-agarose composites in a unidirectional bench press simulation test.

View Article and Find Full Text PDF

Herein, we report the synthesis of new compounds with demonstrated anticancer properties based on the 2,3,4,9-tetrahydro-1H-carbazole scaffold. The Fischer indolization method was used to close the heterocyclic motif. The synthesis method's scope and limitations were thoroughly assessed through a series of experiments.

View Article and Find Full Text PDF

This article presents an in-depth exploration of the roles of Telomere Repeat-binding Factors 1 and 2 (TRF1 and TRF2), and the shelterin complex, in the context of cancer biology. It emphasizes their emerging significance as potential biomarkers and targets for therapeutic intervention. Central to the shelterin complex, TRF1 and TRF2 are crucial in maintaining telomere integrity and genomic stability, their dysregulation often being a hallmark of cancerous cells.

View Article and Find Full Text PDF