Anisotropic battery electrodes that allow enhanced diffusion through the thickness of the electrode can be engineered to improve the rate performance, but direct measurement of 3D diffusion in this pore structure is extremely challenging. To address this, we used 1H and 7Li pulsed field gradient (PFG) NMR to measure anisotropic diffusion in a model porous silicon substrate. We show that NMR spectroscopy can resolve solvent molecules and ions (here, in H2O, DMSO, and the battery electrolyte LIPF6:DC:EMC) in and outside of the pores of the Si substrate, allowing the diffusion coefficients of the ion/molecules in the two components to be individually determined.
View Article and Find Full Text PDFExperimental techniques that probe the local environment around O in paramagnetic Li-ion cathode materials are essential in order to understand the complex phase transformations and O redox processes that can occur during electrochemical delithiation. While Li NMR is a well-established technique for studying the local environment of Li ions in paramagnetic battery materials, the use of (17)O NMR in the same materials has not yet been reported. In this work, we present a combined (17)O NMR and hybrid density functional theory study of the local O environments in Li2MnO3, a model compound for layered Li-ion batteries.
View Article and Find Full Text PDFWe have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g.
View Article and Find Full Text PDFSodium batteries have seen a resurgence of interest from researchers in recent years, owing to numerous favorable properties including cost and abundance. Here we examine the feasibility of studying this battery chemistry with in situ NMR, focusing on Na metal anodes. Quantification of the NMR signal indicates that Na metal deposits with a morphology associated with an extremely high surface area, the deposits continually accumulating, even in the case of galvanostatic cycling.
View Article and Find Full Text PDFLithium dendrite growth in lithium ion and lithium rechargeable batteries is associated with severe safety concerns. To overcome these problems, a fundamental understanding of the growth mechanism of dendrites under working conditions is needed. In this work, in situ (7)Li magnetic resonance (MRI) is performed on both the electrolyte and lithium metal electrodes in symmetric lithium cells, allowing the behavior of the electrolyte concentration gradient to be studied and correlated with the type and rate of microstructure growth on the Li metal electrode.
View Article and Find Full Text PDF