Publications by authors named "N Lugli"

SMARCAL1 (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily A-Like 1), also known as HARP, is an ATP-dependent annealing helicase that stabilizes replication forks during DNA damage. Mutations in this gene are the cause of Schimke immune-osseous dysplasia (SIOD), an autosomal recessive disorder characterized by T-cell immunodeficiency and growth dysfunctions. In this review, we summarize the main roles of SMARCAL1 in DNA repair, telomere maintenance and replication fork stability in response to DNA replication stress.

View Article and Find Full Text PDF

The most prevalent single-nucleotide substitution (SNS) found in cancers is a C-to-T substitution in the CpG motif. It has been proposed that many of these SNSs arise during organismal aging, prior to transformation of a normal cell into a precancerous/cancer cell. Here, we isolated single intestinal crypts derived from normal tissue or from adenomas of Apc mice, expanded them minimally in vitro as organoids, and performed exome sequencing to identify point mutations that had been acquired in vivo at the single-cell level.

View Article and Find Full Text PDF

Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits.

View Article and Find Full Text PDF

The Pold3 gene encodes a subunit of the Polδ DNA polymerase complex. Pold3 orthologs are not essential in Saccharomyces cerevisiae or chicken DT40 cells, but the Schizosaccharomyces pombe ortholog is essential. POLD3 also has a specialized role in the repair of broken replication forks, suggesting that POLD3 activity could be particularly relevant for cancer cells enduring high levels of DNA replication stress.

View Article and Find Full Text PDF

Pioneering studies within the last few years have allowed the in vitro expansion of tissue-specific adult stem cells from a variety of endoderm-derived organs, including the stomach, small intestine, and colon. Expansion of these cells requires activation of the receptor Lgr5 by its ligand R-spondin 1 and is likely facilitated by the fact that in healthy adults the stem cells in these organs are highly proliferative. In many other adult organs, such as the liver, proliferating cells are normally not abundant in adulthood.

View Article and Find Full Text PDF