Here, we report the biochemical and genetic basis of the Vel blood group antigen, which has been a vexing mystery for decades, especially as anti-Vel regularly causes severe haemolytic transfusion reactions. The protein carrying the Vel blood group antigen was biochemically purified from red blood cell membranes. Mass spectrometry-based de novo peptide sequencing identified this protein to be small integral membrane protein 1 (SMIM1), a previously uncharacterized single-pass membrane protein.
View Article and Find Full Text PDFThe congenital dyserythropoietic anemias (CDAs) are inherited red blood cell disorders whose hallmarks are ineffective erythropoiesis, hemolysis, and morphological abnormalities of erythroblasts in bone marrow. We have identified a missense mutation in KLF1 of patients with a hitherto unclassified CDA. KLF1 is an erythroid transcription factor, and extensive studies in mouse models have shown that it plays a critical role in the expression of globin genes, but also in the expression of a wide spectrum of genes potentially essential for erythropoiesis.
View Article and Find Full Text PDFBackground: The Colton blood group system currently comprises three antigens, Co(a) , Co(b) , and Co3. The latter is only absent in the extremely rare individuals of the Colton "null" phenotype, usually referred to as Co(a-b-), which lack the water channel AQP1 that carries the Colton antigens. The discovery of a Co(a-b-) individual with no AQP1 deficiency suggested another molecular basis for the Co(a-b-) phenotype.
View Article and Find Full Text PDFBackground: McLeod syndrome is a rare X-linked neuroacanthocytosis syndrome with hematologic, muscular, and neurologic manifestations. McLeod syndrome is caused by mutations in the XK gene whose product is expressed at the red blood cell (RBC) surface but whose function is currently unknown. A variety of XK mutations has been reported but no clear phenotype-genotype correlation has been found, especially for the point mutations affecting splicing sites.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
April 2005
Selective transporters account for rapid urea transport across plasma membranes of several cell types. UT-B1 urea transporter is widely distributed in rat and human tissues. Because mice exhibit high urea turnover and are the preferred species for gene engineering, we have delineated UT-B1 tissue expression in murine tissues.
View Article and Find Full Text PDF