Zeolitic imidazolate frameworks (ZIFs) are traditionally synthesized using N, N-dimethylformamide (DMF). However, DMF is toxic and hazardous to human health and the environment, hence other alternative solvents need to be considered. Herein, three different solvents like methanol, water and acetone were used to replace DMF and to explore the syntheses of ZIF-90 using a conventional and a microwave-assisted solvothermal method to obtain hydrothermally stable products, which also exhibit an increased water uptake.
View Article and Find Full Text PDFDisposal of copper, manganese and iron is particularly problematic in wastewater of metallurgical and galvanization plants, the electronics industry and agriculture. On the other hand, volatile organic compounds (VOCs), emitted from industrial processes, transportation and consumer products are the main class of air pollutants. The study revealed the potential of waste metal-loaded zeolite, generated through wastewater treatment procedures, to be utilised as an effective VOC removal catalyst for air treatment.
View Article and Find Full Text PDFHere, the facile synthesis of four-length-scaled (ultramicro-micro-meso-macroporous) hierarchically structured porous carbon nanocomposite by an emulsion-template strategy is reported. This previously unreported combination of zeolite nanocrystals embedded in the walls of microcellular carbon foams gives unique textural and structural properties, which result in their excellent ability to selectively capture CO owing to the presence of ultra-micropores. The zeolite-microcellular carbon foam synergism delivers an adsorbent with a significantly enhanced CO capture capacity of up to 5 mmol g , CO /N selectivity of up to 80, and an outstanding multi-cycle capture performance under humid conditions (70 % performance retention after 30 regeneration cycles).
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) nanoparticles in combination with a nonionic surfactant (Pluronic L-121) are used to stabilize dicyclopentadiene (DCPD)-in-water high internal phase emulsions (HIPEs). The resulting HIPEs containing the MIL-100(Fe) nanoparticles (MIL: Materials of Institut Lavoisier) at the interface between the oil- and the water-phases are then cured, and 100 μm thick, fully open, hierarchically porous hybrid membranes are obtained. The properties of the MIL-100(Fe)@pDCPD polyHIPE membranes are characterized and it is found that up to 14 wt% of the MIL-100(Fe) nanoparticles are incorporated in the hybrid material resulting in an increase of the microporosity up to 130 m(2) g(-1).
View Article and Find Full Text PDFA new layered Ca-succinate coordination polymer, poly[μ(3)-succinato-calcium(II)], [Ca(C(4)H(5)O(4))](n), was synthesized by reaction of CaCl(2)·2H(2)O and succinic acid in an aqueous medium under hydrothermal microwave conditions. The structure contains infinite layers of edge-sharing calcium pentagonal-bipyramidal polyhedra forming six-membered rings connected through succinate ligands. Such an assembly of inorganic building units is unique for calcium metal-organic framework-type structures.
View Article and Find Full Text PDF