Proc Natl Acad Sci U S A
June 1997
We present a simple but realistic model for the internal bend-generating mechanism of cilia, using parameters obtained from the analysis of data of the beat of a single cilium, and incorporate it into a recently developed dynamical model. Comparing the results to experimental data for two-dimensional beats, we demonstrate that the model captures the essential features of the motion, including many properties that are not built in explicitly. The beat pattern and frequency change in response to increased viscosity and the presence of neighboring cilia in a realistic fashion.
View Article and Find Full Text PDFThe coronary capillary flow is analyzed theoretically based on continuum mechanics. The capillary is a long, elastic, and permeable vessel loaded externally by tissue pressure, and it is subject to possible periodic length changes, together with adjacent myocytes. Capillary flow is driven by arteriolar-venular pressure difference.
View Article and Find Full Text PDFA new set of equations describing the time evolution of torsion and curvature for an inextensible curve is developed. Combined with our recently developed Slender Body Theory approach to such problems, these equations were applied to simulate three-dimensional ciliary beats, while allowing for cilia interactions. The computer animation technique, which was originally designed to display two-dimensional beats, has been enhanced to accommodate the new three-dimensional results.
View Article and Find Full Text PDFThe coronary capillary flow is analyzed theoretically based on the laws of continuum mechanics. The capillary is considered as a long, elastic and permeable vessel loaded externally by tissue pressure. It is subjected to periodic length changes, together with adjacent myocytes.
View Article and Find Full Text PDFThis paper presents a rigorous and accurate modeling tool for ciliary motion. The hydrodynamics analysis, originally suggested by Lighthill (1975), has been modified to remove computational problems. This approach is incorporated into a moment-balance model of ciliary motion in place of the previously used hydrodynamic analyses, known as Resistive Force Theory.
View Article and Find Full Text PDF