We propose a new method to search for hypothetical scalar particles that have feeble interactions with standard-model particles. In the presence of massive bodies, these interactions produce a nonzero Yukawa-type scalar-field magnitude. Using radio-frequency spectroscopy data of atomic dysprosium, as well as atomic clock spectroscopy data, we constrain the Yukawa-type interactions of a scalar field with the photon, electron, and nucleons for a range of scalar-particle masses corresponding to length scales >10 cm.
View Article and Find Full Text PDFWe report new limits on ultralight scalar dark matter (DM) with dilatonlike couplings to photons that can induce oscillations in the fine-structure constant α. Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in α. Spectroscopy data for two isotopes of dysprosium over a two-year span are analyzed for coherent oscillations with angular frequencies below 1 rad s-1.
View Article and Find Full Text PDFWe propose methods for extracting limits on the strength of P-odd interactions of pseudoscalar and pseudovector cosmic fields with electrons, protons, and neutrons, by exploiting the static and dynamic parity-nonconserving amplitudes and electric dipole moments they induce in atoms. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by Lorentz-violating standard model extensions. Atomic calculations are performed for H, Li, Na, K, Rb, Cs, Ba(+), Tl, Dy, Fr, and Ra(+).
View Article and Find Full Text PDFWe demonstrate a cavity-enhanced room-temperature magnetic field sensor based on nitrogen-vacancy centers in diamond. Magnetic resonance is detected using absorption of light resonant with the 1042 nm spin-singlet transition. The diamond is placed in an external optical cavity to enhance the absorption, and significant absorption is observed even at room temperature.
View Article and Find Full Text PDFWe report on the spectroscopy of radio-frequency transitions between nearly degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant α owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of α, competitive with results obtained from the best atomic clocks in the world.
View Article and Find Full Text PDF