Publications by authors named "N Le Floch"

Article Synopsis
  • The study focuses on optimizing inhibitors for epidermal growth factor receptor (EGFR) Exon20 insertions (Ex20Ins) using structure-based drug design (SBDD).
  • A new compound was discovered that is both effective against EGFR Ex20Ins and able to cross the blood-brain barrier in preclinical tests.
  • The design process involved creating a novel bicyclic structure, making strategic modifications to improve stability and enhance brain exposure by refining key molecular properties.
View Article and Find Full Text PDF

Unlabelled: Although localized prostate cancer is relatively indolent, advanced prostate cancer manifests with aggressive and often lethal variants, including neuroendocrine prostate cancer (NEPC). To identify drivers of aggressive prostate cancer, we leveraged transposon mutagenesis in a mouse model based on prostate-specific loss-of-function of and . Compared with control mice, mice developed more aggressive prostate tumors, with increased incidence of metastasis.

View Article and Find Full Text PDF

Herein, we report the identification and optimization of a series of potent inhibitors of EGFR Exon20 insertions with significant selectivity over wild-type EGFR. A strategically designed HTS campaign, multiple iterations of structure-based drug design (SBDD), and tactical linker replacement led to a potent and wild-type selective series of molecules and ultimately the discovery of . Compound is a potent and selective inhibitor of EGFR Exon20 insertions and has demonstrated encouraging efficacy in NSCLC EGFR CRISPR-engineered H2073 xenografts that carry an SVD Exon20 insertion and reduced efficacy in a H2073 wild-type EGFR xenograft model compared to CLN-081 (), indicating that may have lower EGFR wild-type associated toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Osimertinib is a targeted therapy for lung adenocarcinoma driven by EGFR mutations, significantly enhancing progression-free survival for patients, though many eventually show disease progression.
  • * An analysis of genetic changes in blood samples from patients undergoing osimertinib treatment revealed frequent PIK3CA/AKT/PTEN mutations, which contribute to resistance against the drug.
  • * Combining osimertinib with the AKT inhibitor capivasertib demonstrates improved effectiveness in overcoming resistance caused by these genetic alterations, offering a new treatment strategy for affected patients.*
View Article and Find Full Text PDF