Publications by authors named "N Lamarche"

Maturation of conventional dendritic cells (cDCs) is crucial for maintaining tolerogenic safeguards against auto-immunity and for promoting immunogenic responses to pathogens and cancer. The subcellular mechanism for cDC maturation remains poorly defined. We show that cDCs mature by leveraging an internal reservoir of cholesterol (harnessed from extracellular cell debris and generated by de novo synthesis) to assemble lipid nanodomains on cell surfaces of maturing cDCs, enhance expression of maturation markers and stabilize immune receptor signaling.

View Article and Find Full Text PDF

Ovarian cancer is resistant to immunotherapy, and this is influenced by the immunosuppressed tumor microenvironment (TME) dominated by macrophages. Resistance is also affected by intratumoral heterogeneity, whose development is poorly understood. To identify regulators of ovarian cancer immunity, we employed a spatial functional genomics screen (Perturb-map), focused on receptor/ligands hypothesized to be involved in tumor-macrophage communication.

View Article and Find Full Text PDF
Article Synopsis
  • Aging increases the risk of cancer by affecting how the immune system works, especially in lung tumors.
  • Older immune cells lead to the buildup of certain cells that produce IL-1⍺, which makes cancer grow faster.
  • By blocking IL-1R1 signaling early on, scientists found they could slow down cancer growth in the lungs, colon, and pancreas, and learned how aging is linked to worse cancer outcomes in humans.
View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a group of diseases affecting the left ventricle heart muscle that share a common feature of left ventricular hypertrophy without associated cardiac or systemic disorder. It was found to have a genetic basis with autosomal dominant mutations in the sarcomeric protein genes. Apical HCM is a rare subtype and underappreciated variant of HCM that primarily affects the apex of the heart.

View Article and Find Full Text PDF

Myeloid cells are known to suppress antitumour immunity. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype.

View Article and Find Full Text PDF