Dichroism in double photoionization of H_{2} molecules by elliptically polarized extreme ultraviolet pulses is formulated analytically as a sum of atomiclike dichroism (AD) and molecular symmetry-mixed dichroism (MSMD) terms. The MSMD originates from an interplay of ^{1}Σ_{u}^{+} and ^{1}Π_{u}^{+} continuum molecular ionization amplitudes. For detection geometries in which the AD vanishes, numerical results for the sixfold differential probabilities for opposite pulse helicities show that the MSMD is significant in the electron momentum and angular distributions and is controllable by the ellipticity.
View Article and Find Full Text PDFWe study control of high-order harmonic generation (HHG) driven by time-delayed, few-cycle ω and 2ω counterrotating mid-IR pulses. Our numerical and analytical study shows that the time delay between the two-color pulses allows control of the harmonic positions, both those allowed by angular momentum conservation and those seemingly forbidden by it. Moreover, the helicity of any particular harmonic is tunable from left to right circular without changing the driving pulse helicity.
View Article and Find Full Text PDFSingle ionization of He by two oppositely circularly polarized, time-delayed attosecond pulses is shown to produce photoelectron momentum distributions in the polarization plane having helical vortex structures sensitive to the time delay between the pulses, their relative phase, and their handedness. Results are obtained by both ab initio numerical solution of the two-electron time-dependent Schrödinger equation and by a lowest-order perturbation theory analysis. The energy, bandwidth, and temporal duration of attosecond pulses are ideal for observing these vortex patterns.
View Article and Find Full Text PDFControl of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.
View Article and Find Full Text PDF