Publications by authors named "N Kurabayashi"

Article Synopsis
  • DBP is a key transcription factor that controls daily physiological rhythms by regulating genes with a specific DNA motif, but the exact way its protein levels fluctuate throughout the day is not well understood.
  • This study found that DBP protein levels are down-regulated by the ubiquitin-proteasome pathway, specifically through enzymes UBE2G1 and UBE2T, which promote DBP degradation.
  • TRAF7, an E3 ligase identified in the study, enhances the degradation of DBP and influences the circadian clock, suggesting it plays a significant role in stabilizing DBP levels based on the time of day.
View Article and Find Full Text PDF

Sleep is regulated by homeostatic processes, yet the biological basis of sleep pressure that accumulates during wakefulness, triggers sleep, and dissipates during sleep remains elusive. We explored a causal relationship between cellular synaptic strength and electroencephalography delta power indicating macro-level sleep pressure by developing a theoretical framework and a molecular tool to manipulate synaptic strength. The mathematical model predicted that increased synaptic strength promotes the neuronal "down state" and raises the delta power.

View Article and Find Full Text PDF

In mammals, CLOCK and BMAL1 proteins form a heterodimer that binds to E-box sequences and activates transcription of target genes, including (. Translated PER proteins then bind to the CLOCK-BMAL1 complex to inhibit its transcriptional activity. However, the molecular mechanism and the impact of this PER-dependent inhibition on the circadian clock oscillation remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Down syndrome (DS) happens when there are three copies of chromosome 21, and scientists have used mice to study it.
  • The TcMAC21 mouse model has similar brain issues to humans with DS, like problems with learning and memory.
  • Researchers found that these mice have fewer important brain cells and specific changes in proteins that are important for brain function.
View Article and Find Full Text PDF

CRISPR/Cas-based technologies have revolutionized genetic approaches to addressing a wide range of neurobiological questions. The ability of CRISPR/Cas to introduce mutations into target genes allows us to perform in vivo loss-of-function experiments without generating genetically engineered mice. However, the lack of a reliable method to determine genotypes of individual CRISPR/Cas-transfected cells has made it impossible to unambiguously identify the genetic cause of their phenotypes in vivo.

View Article and Find Full Text PDF