Arterioscler Thromb Vasc Biol
September 2001
Vascular endothelial growth factor (VEGF) has been implicated in the reendothelialization of the vascular wall after balloon injury. This study investigated whether thrombin, which is formed during activation of the coagulation cascade at sites of vascular injury, upregulates VEGF expression in vascular smooth muscle cells (VSMCs). VEGF expression was assessed in native and cultured VSMCs by Northern blot analysis and reverse transcription-polymerase chain reaction and the release of VEGF protein by immunoassay.
View Article and Find Full Text PDFVascular injury after balloon angioplasty results in the rapid activation of platelets leading to the release of growth factors and vasoactive substances. In addition, up-regulation of tissue factor (TF) and an increased production of reactive oxygen species (ROS) have been detected at sites of vascular injury. We investigated whether platelet-derived products (PDP) released from activated human platelets increase ROS production, resulting in the induction of TF expression in vascular smooth muscle cells (SMC).
View Article and Find Full Text PDFBackground: Vascular endothelial growth factor (VEGF), an endothelial mitogen and chemoattractant, has been implicated in the recovery of the endothelium after balloon injury. The increased expression of VEGF in vascular smooth muscle cells (SMC) at sites of injury suggests that this cell type may be a major cellular source of VEGF. This study examined whether aggregating platelets stimulate VEGF expression in cultured SMC.
View Article and Find Full Text PDF1. The possibility that the antiproliferative effect of cyclic GMP- and cyclic AMP-dependent vasodilators involves an impaired progression of vascular smooth muscle cells (VSMC) through the cell cycle and expression of cyclins, which in association with the cyclin-dependent kinases control the transition between the distinct phases of the cell cycle, was examined. 2.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
December 1997
Certain cytokines stimulate the expression of the inducible nitric oxide synthase (iNOS) in vascular smooth muscle cells (VSMCs) and in many other cell types. The large amounts of nitric oxide (NO) generated by iNOS in the vascular wall contribute to the unrelenting hypotension in septic shock. Because septic patients are often treated with barbiturates, we examined the effect of these anesthetic agents on the expression of iNOS in VSMCs.
View Article and Find Full Text PDF