Publications by authors named "N Krisanova"

Trace metal Cu and carbonaceous airborn particulate matter (PM) are dangerous neuropollutants. Here, the ability of Cu to modulate the neurotoxicity caused by water-suspended wood smoke PM preparations (SPs) and vice versa was examined using presynaptic rat cortex nerve terminals. Interaction of Cu and SPs, changes of particle size and surface properties were shown in the presence of Cu using microscopy, DLS, and IR spectroscopy.

View Article and Find Full Text PDF

The action of calix[4]arenes C-424, C-425 and C-1193 has been investigated on suspended cholesterol/egg phosphatidylcholine lipid bilayer in a voltage-clamp mode. Comparative analysis with the membrane action by calix[4]arene-bis-α-hydroxymethylphosphonic acid (C-99) has shown that the substitution of bridge carbons for sulphur and addition of another methyl group to two alkyl tales in the lower rim of former dipropoxycalix[4]arene C-99 transformed mobile carrier that C-99 created in lipid bilayer (Shatursky et al., 2014) into a transmembrane pore as exposure of the bilayer membrane to sulphur-containing derivative dibutoxythiocalix[4]arene C-1193 resulted in microscopic transmembrane current patterns indicative of a channel-like mode of facilitated diffusion.

View Article and Find Full Text PDF

Heavy metals, Cd and Pb, and carbonaceous air pollution particulate matter are hazardous neurotoxicants. Here, a capability of water-suspended smoke particulate matter preparations obtained from poplar wood (WPs) and polypropylene fibers (medical facemasks) (MPs) to influence Cd/Pb-induced neurotoxicity, and vice versa, was monitored using biological system, i.e.

View Article and Find Full Text PDF

Multipollutant approach is a breakthrough in up-to-date environmental quality and health risk estimation. Both mercury and carbonaceous air particulate are hazardous neurotoxicants. Here, the ability of carbonaceous air particulate simulants, i.

View Article and Find Full Text PDF

Tremendous deposits of disposable medical facemask waste after the COVID-19 pandemic require improvement of waste management practice according to WHO report 2022, moreover facemasks are still in use around the world to protect against numerous airborne infections. Here, water-suspended smoke preparations from the combustion of disposable medical facemasks (polypropylene fibers) were collected; size, zeta potential, surface groups of smoke particulate matter were determined by dynamic light scattering, FTIR and Raman spectroscopy, and their optical properties were characterized. Neurochemical study using nerve terminals isolated from rat cortex revealed a significant decrease in the initial rate of the uptake/accumulation of excitatory and inhibitory neurotransmitters, L-[C]glutamate and [H]GABA, and exocytotic release, and also an increase in the extracellular level of these neurotransmitters.

View Article and Find Full Text PDF