Publications by authors named "N Koshizuka"

In order to elucidate the formation mechanism of unconventional arrangements of vortices in high- Tc superconducting thin films at an inclined magnetic field to the layer plane, we investigated the structures of vortex lines inside the films by Lorentz microscopy using our 1-MV field-emission electron microscope. Our observation results concluded that vortex lines are tilted to form linear chains in YBaCu3O(7,8). Vortex lines in the chain-lattice state in Bi2Sr2CaCu2O(8+delta), on the other hand, are all perpendicular to the layer plane, and therefore only vortices lined up along Josephson vortices form chains.

View Article and Find Full Text PDF

High-resolution photoemission is used to study the electronic structure of the cuprate superconductor, Bi(2)Sr(2)CaCu(2)O(8+delta), as a function of hole doping and temperature. A kink observed in the band dispersion in the nodal line in the superconducting state is associated with coupling to a resonant mode observed in neutron scattering. From the measured real part of the self-energy it is possible to extract a coupling constant which is largest in the underdoped regime, then decreasing continuously into the overdoped regime.

View Article and Find Full Text PDF

An inelastic neutron scattering study of overdoped Bi(2)Sr(2)CaCu(2)O(8+delta) ( T(c) = 83 K) has revealed a resonant spin excitation in the superconducting state. The mode energy is E(res) = 38.0 meV, significantly lower than in optimally doped Bi(2)Sr(2)CaCu(2)O(8+delta) ( T(c) = 91 K, E(res) = 42.

View Article and Find Full Text PDF

For optimally doped Bi(2)Sr(2)CaCu(2)O(8+delta), scattering rates in the normal state are found to have a linear temperature dependence over most of the Fermi surface. In the immediate vicinity of the (pi, 0) point, the scattering rates are nearly constant in the normal state, consistent with models in which scattering at this point determines the c-axis transport. In the superconducting state, the scattering rates away from the nodal direction appear to level off and become temperature independent.

View Article and Find Full Text PDF

The photoemission line shapes of the optimally doped cuprate Bi(2)Sr(2)CaCu(2)O(8+delta) were studied in the direction of a node in the superconducting order parameter by means of very high resolution photoemission spectroscopy. The peak width or inverse lifetime of the excitation displays a linear temperature dependence, independent of binding energy, for small energies, and a linear energy dependence, independent of temperature, for large binding energies. This behavior is unaffected by the superconducting transition, which is an indication that the nodal states play no role in the superconductivity.

View Article and Find Full Text PDF