Epidermal basement membrane, a tightly packed network of extracellular matrix (ECM) components, is a source of physical, chemical, and biological factors required for the structural and functional homeostasis of the epidermis. Variations within the ECM create distinct environments, which can affect the property of cells in the basal layer of the epidermis and subsequently affect keratinocyte differentiation and stratification. Very little attention has been paid to mimicking basement membrane in organotypic cultures.
View Article and Find Full Text PDFTo effectively study the skin and its pathology, various platforms have been used to date, with in vitro 3D skin models being considered the future gold standard. These models have generally been engineered from primary cell lines. However, their short life span leading to the use of various donors, imposes issues with genetic variation.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to spread globally despite the worldwide implementation of preventive measures to combat the disease. Although most COVID-19 cases are characterised by a mild, self-limiting disease course, a considerable subset of patients develop a more severe condition, varying from pneumonia and acute respiratory distress syndrome (ARDS) to multi-organ failure (MOF). Progression of COVID-19 is thought to occur as a result of a complex interplay between multiple pathophysiological mechanisms, all of which may orchestrate SARS-CoV-2 infection and contribute to organ-specific tissue damage.
View Article and Find Full Text PDFDifferentiation of normal human keratinocytes (NHK) grown in vitro as a monolayer to confluency can be triggered with an acute increase in concentration of extracellular Ca . Over several days, induced by Ca , the cells form pseudostratified sheets that somewhat resemble the basic organization of the intact skin. This experimental system is widely used in studies of keratinocyte biology and skin pathology.
View Article and Find Full Text PDFReprogramming somatic cells into induced pluripotent stem cells (iPSC) has provided a gateway for many novel discoveries in the field of tissue engineering, regenerative medicine and cell therapy. The need for an efficient, less laborious and fast reprogramming protocol under xeno-free, feeder-free and chemically defined conditions has never been greater. Here we describe a novel approach to reprogramming using the StemRNA 3rd Gen Reprogramming Kit (ReproCELL) which encompasses non-modified microRNAs (NM-miRNA), non-modified E3, K3, B18R RNAs (EKB NM-RNA) and non-modified mRNAs for six crucial transcription factors (OSKMNL NM-RNA).
View Article and Find Full Text PDF