Background: Acute lung allograft dysfunction (ALAD) is an imprecise syndrome denoting concern for the onset of chronic lung allograft dysfunction (CLAD). Mechanistic biomarkers are needed that stratify risk of ALAD progression to CLAD. We hypothesized that single cell investigation of bronchoalveolar lavage (BAL) cells at the time of ALAD would identify immune cells linked to progressive graft dysfunction.
View Article and Find Full Text PDFBackground: Female sex is a significant risk factor for pulmonary arterial hypertension (PAH), yet males with PAH have worse survival - a phenomenon referred to as the "sex paradox" in PAH.
Methods: All adult PAH patients in the Pulmonary Hypertension Association Registry (PHAR) with congruent sex and gender were included. Baseline differences in demographics, hemodynamics, functional parameters, and quality of life were assessed by sex.
Primary graft dysfunction (PGD) limits clinical benefit after lung transplantation, a life-prolonging therapy for patients with end-stage disease. PGD is the clinical syndrome resulting from pulmonary ischemia-reperfusion injury (IRI), driven by innate immune inflammation. We recently demonstrated a key role for NK cells in the airways of mouse models and human tissue samples of IRI.
View Article and Find Full Text PDFTissues take shape through a series of morphogenetic movements guided by local cell-scale mechanical forces. Current in vitro approaches to recapitulate tissue mechanics rely on uncontrolled self-organization or on the imposition of extrinsic and homogenous forces using matrix or instrument-driven stimulation, thereby failing to recapitulate highly localized and spatially varying forces. Here we develop a method for targeted mechanical stimulation of organoids using embedded magnetic nanoparticles.
View Article and Find Full Text PDF