Background/aim: The definition of multiple oral cancers is based on the distances between the tumors. However, it is not possible to accurately predict tumor origins based only on clinical criteria.
Patients And Methods: We performed whole-exome sequencing (WES) to analyze the genetic alterations in five tumors of two patients who underwent surgery in our hospital.
We previously found that Plk1 inhibited the p53/p73 activity through its direct phosphorylation. In this study, we investigated the functional role of Plk1 in modulating the p53 family member TAp63, resulting in the control of apoptotic cell death in liver tumor cells. Immunoprecipitation and in vitro pull-down assay showed that p63 binds to the kinase domain of Plk1 through its DNA-binding region.
View Article and Find Full Text PDFPlk3, one of Polo-like kinase family members, is involved in the regulation of cell cycle progression and DNA damage response. In this study, we found that Plk3 inhibits pro-apoptotic activity of p73 through physical interaction and phosphorylation. During cisplatin (CDDP)-mediated apoptosis, Plk3 was transcriptionally induced, whereas its protein level was kept at basal level, suggesting that Plk3 might rapidly degrade in response to CDDP.
View Article and Find Full Text PDFIn response to DNA damage, p73 plays a critical role in cell fate determination. In this study, we have found that Plk1 (polo-like kinase 1) associates with p73, phosphorylates p73 at Thr-27, and thereby inhibits its pro-apoptotic activity. During cisplatin-mediated apoptosis in COS7 cells in which the endogenous p53 is inactivated by SV40 large T antigen, p73 was induced to accumulate in association with a significant down-regulation of Plk1.
View Article and Find Full Text PDF