Publications by authors named "N Klueva"

In an effort to expand the Gossypium hirsutum L. (cotton) expressed sequence tag (EST) database, ESTs representing a variety of tissues and treatments were sequenced. Assembly of these sequences with ESTs already in the EST database (dbEST, GenBank) identified 9675 cotton sequences not present in GenBank.

View Article and Find Full Text PDF

Approximately 185,000 Gossypium EST sequences comprising >94,800,000 nucleotides were amassed from 30 cDNA libraries constructed from a variety of tissues and organs under a range of conditions, including drought stress and pathogen challenges. These libraries were derived from allopolyploid cotton (Gossypium hirsutum; A(T) and D(T) genomes) as well as its two diploid progenitors, Gossypium arboreum (A genome) and Gossypium raimondii (D genome). ESTs were assembled using the Program for Assembling and Viewing ESTs (PAVE), resulting in 22,030 contigs and 29,077 singletons (51,107 unigenes).

View Article and Find Full Text PDF

A total of 37 original cDNA libraries and 9 derivative libraries enriched for rare sequences were produced from Chinese Spring wheat (Triticum aestivum L.), five other hexaploid wheat genotypes (Cheyenne, Brevor, TAM W101, BH1146, Butte 86), tetraploid durum wheat (T. turgidum L.

View Article and Find Full Text PDF

We have developed 85 new markers (50 RFLPs, 5 SSRs, 12 DD cDNAs, 9 ESTs, 8 HSP-encoding cDNAs and one BSA-derived AFLP marker) for saturation mapping of QTL regions for drought tolerance in rice, in our efforts to identify putative candidate genes. Thirteen of the markers were localized in the close vicinity of the targeted QTL regions. Fifteen of the additional markers mapped, respectively, inside one QTL region controlling osmotic adjustment on chromosome 3 ( oa3.

View Article and Find Full Text PDF

Heat stress is common in most cereal-growing areas of the world. In this paper, we summarize the current knowledge on the molecular and genetic basis of thermotolerance in vegetative and reproductive tissues of cereals. Significance of heat stress response and expression of heat shock proteins (HSPs) in thermotolerance of cereal yield and quality is discussed.

View Article and Find Full Text PDF