Publications by authors named "N Klix"

GABA(B) (gamma-aminobutyric acid type B) receptors are important for keeping neuronal excitability under control. Cloned GABA(B) receptors do not show the expected pharmacological diversity of native receptors and it is unknown whether they contribute to pre- as well as postsynaptic functions. Here, we demonstrate that Balb/c mice lacking the GABA(B(1)) subunit are viable, exhibit spontaneous seizures, hyperalgesia, hyperlocomotor activity, and memory impairment.

View Article and Find Full Text PDF

We have used both normal and transgenic mice to analyse the recruitment and targeting of somatic hypermutation to the immunoglobulin loci. We compare methods for analysing hypermutation and discuss how large databases of mutations can be assembled by PCR amplification of the rearranged V-gene flanks from the germinal centre B cells of normal mice as well as by transgene-specific amplification from transgenic B cells. Such studies confirm that hypermutation is preferentially targeted to the immunoglobulin V gene with the bcl6 gene, for example, escaping this intense mutational targeting in germinal centre B cells.

View Article and Find Full Text PDF

Recruitment of somatic hypermutation to the Ig kappa locus has previously been shown to depend on the enhancer elements, Ei/MAR and E3'. Here we show that these elements are not sufficient to confer mutability. However, hypermutation is effectively targeted to a chimeric beta-globin/Ig kappa transgene whose 5' end is composed of the human beta-globin gene (promoter and first two exons) and whose 3' end consists of selected sequences derived from downstream of the J kappa cluster (Ei/MAR, C kappa + flank and E3').

View Article and Find Full Text PDF

The V regions of immunoglobulin kappa transgenes are targets for hypermutation in germinal centre B cells. We show by use of modified transgenes that the recruitment of hypermutation is substantially impaired by deletion of the nuclear matrix attachment region (MAR) which flanks the intron-enhancer (Ei). Decreased mutation is also obtained if Ei, the core region of the kappa3'-enhancer (E3') or the E3'-flank are removed individually.

View Article and Find Full Text PDF

Hypermutation of immunoglobulin genes is a key process in antibody diversification. Little is known about the mechanism, but the availability of rapid facile assays for monitoring immunoglobulin hypermutation would greatly aid the development of culture systems for hypermutating B cells as well as the screening for individuals deficient in the process. Here we describe two such assays.

View Article and Find Full Text PDF