Terpene derivatives converted by microbial biotransformation constitute an important resource for natural pharmaceutical, fragrance, and aroma substances. In the present study, the monoterpene α-phellandrene was biotransformed by 16 different strains of microorganisms (bacteria, fungi, and yeasts). The transformation metabolites were initially screened by TLC and GC/MS, and then further characterized by NMR spectroscopic techniques.
View Article and Find Full Text PDFEthnopharmacological Relevance: Capparis ovata Desf. has wide natural distribution in Turkey and it is consumed in pickled form. Flower buds, root bark, and fruits of the plant are used traditionally due to their analgesic, anti-inflammatory, wound healing, anti-rheumatismal, tonic, and diuretic effects.
View Article and Find Full Text PDFIncubation of alpha-cedrol and caryophyllene oxide with Neurospora crassa afforded 12beta-hydroxy cedrol, 10alpha-hydroxy cedrol, and 3beta-hydroxy cedrol, and 12beta-hydroxy caryophyllene oxide as major metabolites, respectively. The antibacterial and radical scavenging activities of the metabolites were evaluated in vitro using broth microdilution and bioauthographic techniques. However, no significant antibacterial and antioxidant activities were observed when compared with those of standard substances.
View Article and Find Full Text PDFThe cyclic monoterpene ketone (-)-carvone was metabolized by the plant pathogenic fungus Absidia glauca. After 4 days of incubation, the diol 10-hydroxy-(+)-neodihydrocarveol was formed. The absolute configuration and structure of the crystalline substance was identified by means of X-ray diffraction and by spectroscopic techniques (MS, IR and NMR).
View Article and Find Full Text PDF