Functional magnetic resonance imaging (fMRI) of the spinal cord is relevant for studying sensation, movement, and autonomic function. Preprocessing of spinal cord fMRI data involves segmentation of the spinal cord on gradient-echo echo planar imaging (EPI) images. Current automated segmentation methods do not work well on these data, due to the low spatial resolution, susceptibility artifacts causing distortions and signal drop-out, ghosting, and motion-related artifacts.
View Article and Find Full Text PDFMapping the neural patterns that drive human behavior is a key challenge in neuroscience. Even the simplest of our everyday actions stem from the dynamic and complex interplay of multiple neural structures across the central nervous system (CNS). Yet, most neuroimaging research has focused on investigating cerebral mechanisms, while the way the spinal cord accompanies the brain in shaping human behavior has been largely overlooked.
View Article and Find Full Text PDFWith the brain, the spinal cord forms the central nervous system. Initially considered a passive relay between the brain and the periphery, the spinal cord is now recognized as being active and plastic. Yet, it remains largely overlooked by the human neuroscience community, in stark contrast with the wealth of research investigating the brain.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) has been widely employed to study stroke pathophysiology. In particular, analyses of fMRI signals at rest were directed at quantifying the impact of stroke on spatial features of brain networks. However, brain networks have intrinsic time features that were, so far, disregarded in these analyses.
View Article and Find Full Text PDF