Stochastic fluctuations (noise) in transcription generate substantial cell-to-cell variability. However, how best to quantify genome-wide noise remains unclear. Here, we utilize a small-molecule perturbation (5'-iodo-2'-deoxyuridine [IdU]) to amplify noise and assess noise quantification from numerous single-cell RNA sequencing (scRNA-seq) algorithms on human and mouse datasets and then compare it to noise quantification from single-molecule RNA fluorescence in situ hybridization (smFISH) for a panel of representative genes.
View Article and Find Full Text PDFStochastic fluctuations (noise) in transcription generate substantial cell-to-cell variability. However, how best to quantify genome-wide noise, remains unclear. Here we utilize a small-molecule perturbation (IdU) to amplify noise and assess noise quantification from numerous scRNA-seq algorithms on human and mouse datasets, and then compare to noise quantification from single-molecule RNA FISH (smFISH) for a panel of representative genes.
View Article and Find Full Text PDFAntiviral therapies with reduced frequencies of administration and high barriers to resistance remain a major goal. For HIV, theories have proposed that viral-deletion variants, which conditionally replicate with a basic reproductive ratio [R] > 1 (termed "therapeutic interfering particles" or "TIPs"), could parasitize wild-type virus to constitute single-administration, escape-resistant antiviral therapies. We report the engineering of a TIP that, in rhesus macaques, reduces viremia of a highly pathogenic model of HIV by >3log following a single intravenous injection.
View Article and Find Full Text PDFMicrotubules (MTs) are observed to move and buckle driven by ATP-dependent molecular motors in both mitotic and interphasic eukaryotic cells as well as in specialized structures such as flagella and cilia with a stereotypical geometry. In previous work, clamped MTs driven by a few kinesin motors were seen to buckle and occasionally flap in what was referred to as flagella-like motion. Theoretical models of active-filament dynamics and a following force have predicted that, with sufficient force and binding-unbinding, such clamped filaments should spontaneously undergo periodic buckling oscillations.
View Article and Find Full Text PDF