Over the past decade, single-cell transcriptomics has significantly evolved and become a standard laboratory method for simultaneous analysis of gene expression profiles of individual cells, allowing the capture of cellular diversity. In order to overcome limitations posed by difficult-to-isolate cell types, an alternative approach aiming at recovering single nuclei instead of intact cells can be utilized for sequencing, making transcriptome profiling of individual cells universally applicable. These techniques have become a cornerstone in the study of brain organoids, establishing them as models of the developing human brain.
View Article and Find Full Text PDFSturge-Weber syndrome (SWS) is a sporadic, congenital, neuro-cutaneous disorder characterized by a mosaic, capillary malformation. SWS and non-syndromic capillary malformations are both caused by a somatic activating mutation in GNAQ encoding the G protein subunit alpha-q protein. The missense mutation R183Q is the sole GNAQ mutation identified thus far in 90% of SWS-associated or isolated capillary malformations.
View Article and Find Full Text PDFBackground: Several countries have recently issued 24-h movement guidelines that include quantitative recommendations for moderate-to-vigorous physical activity (MVPA), sedentary behaviour (SB), and sleep. This study explored the associations of meeting the 24-h movement guidelines with stress and self-rated health among adults, and whether the likelihood of favourable outcomes increases with the number of guidelines met.
Methods: A total of 2476 adults aged 18 years and over completed a questionnaire on their time spent in MVPA, SB and sleep, frequency of stress (never, very rarely, occasionally, often, every day), self-rated health (very good, good, fair, bad, very bad), sociodemographic characteristics, and lifestyle variables.
Knockout of the ubiquitously expressed miRNA-17∼92 cluster in mice produces a lethal developmental lung defect, skeletal abnormalities, and blocked B lymphopoiesis. A shared target of miR-17∼92 miRNAs is the pro-apoptotic protein BIM, central to life-death decisions in mammalian cells. To clarify the contribution of miR-17∼92:Bim interactions to the complex miR-17∼92 knockout phenotype, we used a system of conditional mutagenesis of the nine 3' UTR miR-17∼92 seed matches.
View Article and Find Full Text PDF