In this study we propose an architecture () for the growth and form of behavior in vertebrates and arthropods. We show in what sense behavior is an extension of anatomy. Then we show that movement-based behavior shares linearity and modularity with the skeletal body plan, and with the Hox genes; that it mirrors the geometry of the physical environment; and that it reveals the animal's understanding of the animate and physical situation, with implications for perception, attention, emotion, and primordial cognition.
View Article and Find Full Text PDFNeurosci Biobehav Rev
April 2018
The scientific community is increasingly concerned with the proportion of published "discoveries" that are not replicated in subsequent studies. The field of rodent behavioral phenotyping was one of the first to raise this concern, and to relate it to other methodological issues: the complex interaction between genotype and environment; the definitions of behavioral constructs; and the use of laboratory mice and rats as model species for investigating human health and disease mechanisms. In January 2015, researchers from various disciplines gathered at Tel Aviv University to discuss these issues.
View Article and Find Full Text PDFPsychopharmacology (Berl)
January 2014
Rationale: In psychiatric drug discovery, a critical step is predicting the psychopharmacological effect and therapeutic potential of novel (or repurposed) compounds early in the development process. This process is hampered by the need to utilize multiple disorder-specific and labor-intensive behavioral assays.
Objectives: This study aims to investigate the feasibility of a single high-throughput behavioral assay to classify psychiatric drugs into multiple psychopharmacological classes.