Publications by authors named "N K de Rooij"

Neoadjuvant immune checkpoint blockade (ICB) has shown unprecedented activity in mismatch repair deficient (MMRd) colorectal cancers, but its effectiveness in MMRd endometrial cancer (EC) remains unknown. In this investigator-driven, phase I, feasibility study (NCT04262089), 10 women with MMRd EC of any grade, planned for primary surgery, received two cycles of neoadjuvant pembrolizumab (200 mg IV) every three weeks. A pathologic response (primary objective) was observed in 5/10 patients, with 2 patients showing a major pathologic response.

View Article and Find Full Text PDF

Recent work has shown evidence for the prognostic significance of tumor infiltrating B cells (B-TIL) in high grade serous ovarian carcinoma (HGSOC), the predominant histological subtype of ovarian cancer. However, it remains unknown how the favorable prognosis associated with B-TIL relates to the current standard treatments of primary debulking surgery (PDS) followed by chemotherapy or (neo-)adjuvant chemotherapy (NACT) combined with interval debulking surgery. To address this, we analyzed the prognostic impact of B-TIL in relationship to primary treatment and tumor infiltrating T cell status in a highly homogenous cohort of HGSOC patients.

View Article and Find Full Text PDF

Achieving convenient and accurate detection of indoor ppb-level formaldehyde is an urgent requirement to ensure a healthy working and living environment for people. Herein, ultrasmall InO nanorods and supramolecularly functionalized reduced graphene oxide are selected as hybrid components of visible-light-driven (VLD) heterojunctions to fabricate ppb-level formaldehyde (HCHO) gas sensors (named InAG sensors). Under 405 nm visible light illumination, the sensor exhibits an outstanding response toward ppb-level HCHO at room temperature, including the ultralow practical limit of detection (pLOD) of 5 ppb, high response (/ = 2.

View Article and Find Full Text PDF

Implementing parts per billion-level nitric oxide (NO) sensing at room temperature (RT) is still in extreme demand for monitoring inflammatory respiratory diseases. Herein, we have prepared a kind of core-shell structural Hemin-based nanospheres (Abbr.: Hemin-nanospheres, defined as HNSs) with the core of amorphous Hemin and the shell of acetone-derived carbonized polymer, whose core-shell structure was verified by XPS with argon-ion etching.

View Article and Find Full Text PDF