High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFWhile triple-negative breast cancer (TNBC) is known to be heterogeneous at the genomic and transcriptomic levels, spatial information on tumor organization and cell composition is still lacking. Here, we investigate TNBC tumor architecture including its microenvironment using spatial transcriptomics on a series of 92 patients. We perform an in-depth characterization of tumor and stroma organization and composition using an integrative approach combining histomorphological and spatial transcriptomics.
View Article and Find Full Text PDFDeconvoluting the vibrations and harmonics in solid-solid interfaces is crucial for designing materials with improved performance, durability, and functionality. The measured vibrating microcantilever signal in the dynamic atomic force microscopy (AFM) encompasses a multitude of distinct signatures reflecting a diverse array of material properties. Nevertheless, uncertainties persist in decoding these signatures, primarily arising from the interplay between attractive and repulsive forces.
View Article and Find Full Text PDFA search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140 fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13 TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products.
View Article and Find Full Text PDF