Type 1 diabetes mellitus (T1D) is characterized by a heightened antibody (Ab) response to pancreatic islet self-antigens, which is a biomarker of progressive islet pathology. We recently identified a novel antibody to clade B serpin that reduces islet-associated T cell accumulation and is linked to the delayed onset of T1D. As natural immunity to clade B arises early in life, we hypothesized that it may influence islet development during that time.
View Article and Find Full Text PDFFate determination for autoreactive T cells relies on a series of avidity-dependent interactions during T cell selection, represented by two general types of signals, one based on antigen expression and density during T cell development, and one based on genes that interpret the avidity of TCR interaction to guide developmental outcome. We used proinsulin-specific HLA class II tetramers to purify and determine transcriptional signatures for autoreactive T cells under differential selection in type 1 diabetes (T1D), in which insulin (INS) genotypes consist of protective and susceptible alleles that regulate the level of proinsulin expression in the thymus. Upregulation of steroid nuclear receptor family 4A (NR4A) and early growth response family genes in proinsulin-specific T cells was observed in individuals with susceptible INS-VNTR genotypes, suggesting a mechanism for avidity-dependent fate determination of the T cell repertoire in T1D.
View Article and Find Full Text PDFDiabetes Metab Res Rev
November 2011
Background: Islet-antigen-specific CD4+ T cells are known to promote auto-immune destruction in T1D. Measuring T-cell number and function provides an important biomarker. In response to this need, we evaluated responses to proinsulin and GAD epitopes in a multicentre study.
View Article and Find Full Text PDFBackground: Identification of T-cell reactivity to β-cell antigen epitopes is an important goal for studying pathogenesis and for designing and monitoring of immunotherapeutic interventions in type 1 diabetes (T1D).
Methods: We performed a multicentre validation of known human leukocyte antigen (HLA) class I CD8+ T-cell epitopes. To this end, peripheral blood T-cell responses were measured in 35 recently (<2 years) diagnosed HLA-A*02:01+ T1D patients using blind-coded HLA-A2 tetramers (TMrs) and pentamers (PMrs), encompassing two epitopes of preproinsulin (PPI; PPIA12-20 and PPIB10-18) and two epitopes of glutamic acid decarboxylase (GAD; GAD114-122 and GAD536-545).
Objective: The mechanistic basis for the breakdown of T-cell tolerance in type 1 diabetes is unclear and could result from a gain of effector function and/or loss of regulatory function. In humans, the CD4+CD25+Foxp3+ T-cell compartment contains both effector and regulatory T cells, and it is not known how their relative proportions vary in disease states.
Research Design And Methods: We performed a longitudinal study of CD4+CD25+ T-cell function in children with type 1 diabetes at onset and throughout the 1st year of disease.