A multiinstitutional, transitional epidemiologic study was conducted with a worker population in the Czech Republic to evaluate the utility of a continuum of non-disease biological responses as biomarkers of exposure to 1,3-butadiene (BD)* in an industrial setting. The study site included two BD facilities in the Czech Republic. Institutions that collaborated in the study were the University of Vermont (Burlington, Vermont, USA); the Laboratory of Genetic Ecotoxicology (Prague, the Czech Republic); Shell International Chemicals, BV (Amsterdam, The Netherlands); the University of North Carolina at Chapel Hill (Chapel Hill, North Carolina, USA); University of Texas Medical Branch at Galveston (Galveston, Texas, USA); Leiden University (Leiden, The Netherlands); and the Health and Safety Laboratory (Sheffield, United Kingdom).
View Article and Find Full Text PDFSince 1,3-butadiene (BD) is a suspected human carcinogen, exposure to BD should be minimised and controlled. This study aimed at comparing the suitability of biomarkers for low levels of exposure to BD, and at exploration of the relative pathways of human metabolism of BD for comparison with experimental animals. Potentially sensitive biomarkers for BD are its urinary metabolites 1,2-dihydroxybutyl mercapturic acid (DHBMA, also referred to as MI) and 1- and 2-monohydroxy-3-butenyl mercapturic acid (MHBMA, also referred to as MII) and its haemoglobin (Hb) adducts 1- and 2-hydroxy-3-butenyl valine (MHBVal).
View Article and Find Full Text PDF1,3-Butadiene is a rodent carcinogen and its epoxide metabolites, 1,2-epoxy-3-butene (EB), 1,2-epoxy-3,4-butanediol (EBD), and 1,2:3,4-diepoxybutane (DEB) have been suggested as ultimate carcinogens. This study aimed at identification and quantification of DNA adducts in rats and mice following exposure to BD and its major metabolite EB to identify the reactive epoxide(s) in target tissues. Reaction of [4-(14)C]-EB with 2'-deoxyguanosine (dG) or DNA gave equal amounts of N7-(2-hydroxy-3-butenyl)guanine (G1) and N7-(1-(hydroxymethyl)-2-propenyl)guanine (G2).
View Article and Find Full Text PDFBronchiolo-alveolar tumors were observed in mice exposed chronically to 160 ppm styrene, whereas no tumors were seen in rats up to concentrations of 1000 ppm. Clara cells, which are predominant in the bronchiolo-alveolar region in mouse lungs but less numerous in rat and human lung, contain various cytochrome P450s, which may oxidize styrene to the rodent carcinogen styrene-7,8-oxide (SO) and other reactive metabolites. Reactive metabolites may form specific DNA adducts and induce the tumors observed in mice.
View Article and Find Full Text PDF1. Some glycidyl ethers (GE) have been shown to be direct mutagens in short-term in vitro tests and consequently GE are considered to be potentially mutagenic in vivo. However, GE may be metabolically inactivated in the body by two different enzymatic routes: conjugation of the epoxide moiety with the endogenous tripeptide glutathione (GSH) catalysed by glutathione S-transferase (GST) or hydrolysis of the epoxide moiety catalysed by epoxide hydrolase (EH).
View Article and Find Full Text PDF