By developing a 3D X-ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone-cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small-angle X-ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage-bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular-level disorder, is found in the cartilage (sliding) surface region.
View Article and Find Full Text PDFHere, we report the design and successful implementation of an ultra-low oxygen sample cell for use on the SAXS-WAXS (small-wide angle x-ray scattering) beamline I22 at DIAMOND. The rigorous exclusion of oxygen is found to require double jacketing with purge gas throughout the entire system, pipework, pumps, and the sample cell itself. This particularly includes a "double-window" arrangement at the sample location to accommodate the very tight geometrical restrictions of the sample position.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1021/acs.macromol.
View Article and Find Full Text PDFIn situ small-angle X-ray scattering (SAXS) is a powerful technique for characterizing block-copolymer nano-object formation during polymerization-induced self-assembly. To work effectively in situ, it requires high intensity X-rays which enable the short acquisition times required for real-time measurements. However, routine access to synchrotron X-ray sources is expensive and highly competitive.
View Article and Find Full Text PDFRecent studies apparently finding deleterious effects of radiation exposure on cataract formation in birds and voles living near Chernobyl represent a major challenge to current radiation protection regulations. This study conducted an integrated assessment of radiation exposure on cataractogenesis using the most advanced technologies available to assess the cataract status of lenses extracted from fish caught at both Chernobyl in Ukraine and Fukushima in Japan. It was hypothesised that these novel data would reveal positive correlations between radiation dose and early indicators of cataract formation.
View Article and Find Full Text PDF