Obesity is a multifactorial disease with detrimental effects on health and quality of life; unregulated satiety plays a crucial role in food intake and obesity development. Naringenin (NAR) has shown beneficial effects on lipid and carbohydrate metabolism, although its impact on adiposity and satiety remains unclear. This study reports a Western diet (WD)-induced obesity model in rats, wherein 100 mg/kg of NAR was administered as an anti-obesity agent for 8 weeks; oxidative stress, lipid profile, and satiety biomarkers were then studied, as well as in silico interaction between NAR and cholecystokinin (CCK) and ghrelin receptors.
View Article and Find Full Text PDFCell Biochem Biophys
March 2024
Avocado paste (AP) is the main industrial byproduct of its processing, and retains various phenolic compounds (PCs). PCs are known to normalize the plasma lipid profile, but those from avocado byproducts have been minimally studied. We report the normalizing effects of an AP-derived phenolic extract (PE) on the plasma lipid profile of male Wistar rats.
View Article and Find Full Text PDFObesity is a serious health problem worldwide, since it is associated with multiple metabolic disorders and complications such as cardiovascular disease, type 2 diabetes, fatty liver disease and overall metabolic dysfunction. Dysregulation of the hunger-satiety pathway, which includes alterations of central and peripheral signaling, explains some forms of obesity by favoring hyperphagia and weight gain. The present work comprehensively summarizes the mechanisms by which naringenin (NAR), a predominant flavanone in citrus fruits, could modulate the main pathways associated with the development of obesity and some of its comorbidities, such as oxidative stress (OS), inflammation, insulin resistance (IR) and dyslipidemia, as well as the role of NAR in modulating the secretion of enterohormones of the satiety pathway and its possible antiobesogenic effect.
View Article and Find Full Text PDFThis study aimed to determine the phenolic compounds profile, antioxidant potential and cytotoxicity of extracts and fractions of Caesalpinia palmeri. Methanolic extracts were generated from C. palmeri berries, stems and flowers.
View Article and Find Full Text PDF