Loss-of-function variants (LoFs) disrupt the activity of their impacted gene. They are often associated with clinical phenotypes, including autosomal dominant diseases driven by haploinsufficiency. Recent analyses using biobanks have suggested that LoF penetrance for some haploinsufficient disorders may be low, an observation that has important implications for population genomic screening.
View Article and Find Full Text PDFBackground: Inter-individual variation in blood pressure (BP) arises in part from sequence variants within enhancers modulating the expression of causal genes. We propose that these genes, active in tissues relevant to BP physiology, can be identified from tissue-level epigenomic data and genotypes of BP-phenotyped individuals.
Methods: We used chromatin accessibility data from the heart, adrenal, kidney, and artery to identify cis-regulatory elements (CREs) in these tissues and estimate the impact of common human single-nucleotide variants within these CREs on gene expression, using machine learning methods.
It has been suggested that diagnostic yield (DY) from Exome Sequencing (ES) may be lower among patients with non-European ancestries than those with European ancestry. We examined the association of DY with estimated continental/subcontinental genetic ancestry in a racially/ethnically diverse pediatric and prenatal clinical cohort. Cases (N = 845) with suspected genetic disorders underwent ES for diagnosis.
View Article and Find Full Text PDF