Publications by authors named "N J Richter-Cook"

Eukaryotic initiation factor 4A (eIF4A) is an RNA-dependent ATPase and ATP-dependent RNA helicase that is thought to melt the 5' proximal secondary structure of eukaryotic mRNAs to facilitate attachment of the 40S ribosomal subunit. eIF4A functions in a complex termed eIF4F with two other initiation factors (eIF4E and eIF4G). Two isoforms of eIF4A, eIF4AI and eIF4AII, which are encoded by two different genes, are functionally indistinguishable.

View Article and Find Full Text PDF

A new protein with translational activity has been identified on the basis of its ability to stimulate translation in an in vitro globin synthesis assay deficient in eukaryotic initiation factor (eIF) 4B and eIF4F. This protein has been purified to greater than 80% homogeneity from rabbit reticulocyte lysate and has been given the name eIF4H. eIF4H was shown to stimulate the in vitro activities of eIF4B and eIF4F in globin synthesis, as well as the in vitro RNA-dependent ATPase activities of eIF4A, eIF4B, and eIF4F.

View Article and Find Full Text PDF

The mammalian translation initiation factor 3 (eIF3), is a multiprotein complex of approximately 600 kDa that binds to the 40 S ribosome and promotes the binding of methionyl-tRNAi and mRNA. cDNAs encoding 5 of the 10 subunits, namely eIF3-p170, -p116, -p110, -p48, and -p36, have been isolated previously. Here we report the cloning and characterization of human cDNAs encoding the major RNA binding subunit, eIF3-p66, and two additional subunits, eIF3-p47 and eIF3-p40.

View Article and Find Full Text PDF

The senile plaques found within the cerebral cortex and hippocampus of the Alzheimer disease brain contain beta-amyloid peptide (A beta) fibrils that are associated with a variety of macromolecular species, including dermatan sulfate proteoglycan and heparan sulfate proteoglycan. The latter has been shown recently to bind tightly to both amyloid precursor protein and A beta, and this binding has been attributed largely to the interaction of the core protein of heparan sulfate proteoglycan with A beta and its precursor. Here we have examined the ability of synthetic A beta s to bind to and interact with the glycosaminoglycan moieties of proteoglycans.

View Article and Find Full Text PDF

The interaction of several forms (p51, p66, and p66/p51) of recombinant human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) with a synthetic derivative of its cognate replication primer, tRNA(Lys-3), has been determined by gel-mobility shift analysis. While p66/p51 RT is proficient in tRNA binding, preparations of p66 and p51 display only weak binding at elevated protein:tRNA ratios, despite the former containing both RNA-dependent DNA polymerase and ribonuclease H (RNase H) activity. Gel permeation analysis of purified p66 RT indicate this to be predominantly monomeric, suggesting that dimerization may be a prerequisite for efficient tRNA binding.

View Article and Find Full Text PDF